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Abstract 

Certain experimental horticultural operations require 
an autonomous vehicle capable of navigating through 
a field of crop plants. An image analysis system ex- 
ists which can locate the crop row structure, but sim- 
ple reactive control of the vehicle on the basis of this 
data would not be sufficiently reliable; instead a multi- 
sensor data fusion based approach is preferred. Since 
the vehicle must be able to operate in many fields to 
be economic, artificial navigation beacons and detailed 
prior maps are disadvantageous. 

A novel navigation scheme has been devised, which 
allows the crop rows themselves to be used as a naviga- 
tion aid. The commanded path of the vehicle through 
the field is expressed by path curvature as a function 
of forward distance; parts of the path are marked as 
being aligned with crop rows. Data from image anal- 
ysis is combined with that from a solid state compass 
and dead reckoning using an extended Kalman filter. 
Rather than position in an arbitrary Cartesian coordi- 
nate frame, the EKF estimates position and orienta- 
tion error from the commanded path, which may be 
used directly for feedback control of vehicle motion. 

The method has been implemented on a small hor- 
ticultural vehicle, allowing it to follow crop rows and 
turn at  the end of the rows fully autonomously. The 
system has been tested in the field, and results show- 
ing the accuracy of guidance along crop rows are pre- 
sented. 

1 Introduction 
Current research at  Silsoe Research Institute is con- 
cerned with the application of agro-chemical treat- 
ments - e.g. herbicides, pesticides or foliar feeds, on a 
selective basis to individual crop plants or weeds. It is 
thought that by this approach, chemical inputs may be 
reduced by perhaps 80%, with obvious environmental 

benefits. 
The implementation of this approach uses an image 

analysis system to locate and identify plants, weeds 
and soil in real time from views taken from a camera 
ahead of the spray bar [2]. A continuous local map is 
formed by merging the data from individual images, 
and the contents of this map are then used to deter- 
mine whether treatment should be applied by each of 
a closely spaced array of spray nozzles. 

As a result of the required precision and the con- 
sequent complexity of the applicator, the large boom 
widths used in conventional crop spraying are imprac- 
tical. The need to identify and differentiate between 
crop plant and weeds in real time, combined with phys- 
ical limitations on the time needed to turn on and off 
a spray jet, place an upper limit on vehicle forward 
speed in the region of lms-l. Taken together, these 
constraints place a limit on the rate of work making it 
impractical to perform such precision operations from 
a manually driven vehicle. For this reason a totally 
automated solution has been sought. This requires 
an autonomous vehicle which can follow rows of crop 
plants; moreover, it. must detect when the end of the 
row has been reached, and relocate itself at the head 
of the next row, continuing until the whole plot has 
been treated. 

2 Navigation and guidance 
A now conventional guidance strategy for robot vehi- 
cles is to solve the localisation problem by fusion of 
dead reckoning information and observations of fixed 
beacons or landmarks, e.g. [4]. An extended Kalman 
filter is typically used to maintain an estimate of posi- 
tion in some chosen Cartesian world coordinate frame. 
The desired paths for the vehicle are also expressed in 
this coordinate system, allowing the positional errors 
to be computed. 

For the horticultural application, sections of the 
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path are determined by the position of the plant rows, 
which it would be impractical to map a priori in a 
Cartesian coordinate frame; instead the plant rows 
must be located on-line. An attractively simple ap- 
proach would be to  use a sensor based control system 
where the detected locations of crop plants given by 
the image analysis system are used to  allow the vehi- 
cle to  follow the rows, in much the way that the basic 
industrial AGV follows a leader cable. The limitation 
with this approach is that of robustness: the sensor 
data is of rather poor quality; plants may be missing 
in areas. Also, the vehicle must be able to turn auto- 
matically when the end of the row is reached. 

For the horticultural robot, the robustness benefits 
of a system based upon multi sensor fusion are desir- 
able without the need for artificial beacons or a de- 
tailed a priori map of the field. We have achieved this 
by using a novel method for specifying commanded 
paths and vehicle position. The commanded trajec- 
tory of the vehicle is expressed by the curvature of the 
path c(.) and the commanded speed w(x) as functions 
of distance traveled, 2. The path is split into segments, 
such that C(Z) and w(z) are piecewise linear functions. 
Some of the segments are associated with crop rows; 
these are labeled as such in the path description, and 
assumed to  be nominally straight. For the turning 
manczuvres, a collection of segments are assembled 
which yield a 180° turn suitable for the (known) spac- 
ing of the crop rows. 

Vehicle position may be expressed with respect to 
the commanded path in an intrinsic coordinate set 
[x y e], where 3 is the forward distance along the path, 
y the perpendicular offset, and 0 the orientation of the 
vehicle relative to  the tangent direction of the path at 
that point. Thus we estimate directly state variables 
y and 0, which are the position and orientation errors 
needed to  control the vehicle steering, without the in- 
termediate step of obtaining position in a Cartesian 
coordinate frame. 

3 EKF position estimator for- 
mulat ion 

The position of the vehicle, in the form given above, 
is estimated using an extended Kalman filter (EKF) 
[l]. The linear (U) and angular (R) speeds which are 
provided by the vehicle low level control system are 
used in the prediction step. 

Observations of offset and heading angle relative to 
the plant rows are provided by an image analysis sys- 
tem (fuliy described elsewhere [ 5 ] ) ,  and vehicle orien- 
tation is measured by a solid state magnetic compass. 

\ I  
\ I  

Figure 1: Vehicle position when following a curved 
path segment. 

The EKF formulation described here is a development 
of the method described in [3]. 

3.1 Plant model 

Let the system state at time IC be represented by 
the vector x(L) = [.(IC) y(k) 8(k) $ ( I C ) I T ,  where 
.(IC), y(k), O(k) denote the vehicle position relative to  
the demanded path. State variable $(k) is the angle 
in the horizontal plane between the tangent direction 
of the path and magnetic north, and is used in inter- 
preting compass observations. 

The plant is modelled by the non-linear discrete time 
state transition equation 

where u(k)  = [v illT and v(k) represents zero mean 
plant noise. 

As the vehicle follows a curved path, in time step 
r the small incremental motion from position x ( k )  to  
x(k + 1) subtends angle A$ about the centre of curva- 
ture C of the demanded path as shown in figure 1. 
Approximating curvature C(Z) as constant, and the 
vehicle motion as a translation of distance TW in the 
direction the vehicle is oriented, it can be shown by 
geometric considerations that 

rw cos e 
1 - c(e)(y + rvsine)  

A$ = tan-' 
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Equation (3) is used as the plant model when the 
commanded path curvature is non-zero. However, (3) 
cannot be evaluated when path curvature c(.) is small. 
In the limit as ~ ( 2 )  4 0, (2) and (3) reduce to 

1 J 
which is the familiar form used for localisation in a 
Cartesian coordinate frame. This reduced form is used 
as the plant model in place of (3) when following a 
straight path (i.e., c(.) = 0). 

3.2 Observation models 
Two sensor systems are used to  correct the position es- 
timates, a solid state magnetic compass, and the image 
analysis system. 

The magnetic compass used is a three axis solid state 
magnetometer. To simplify the data fusion problem, 
the 3D measurement is projected onto the horizontal 
using measured vehicle pitch and roll angles, to give 
a single heading (yaw) measure. The magnetometer 
data has an additional complication; the presence of 
steelwork in the structure of the vehicle distorts the 
heading data. This effect is first compensated for us- 
ing a look up table, built by recording compass data 
against true orientation whilst the vehicle is driven in 
circles. A 64 element look up table is used, with linear 
interpolation applied to obtain intermediate points. 
The corrected single element observation z1 (k) has ob- 
servation model: 

where 

Noise input wl(k) is modelled as Gaussian; this is 
technically rather inaccurate but in practice adequate. 

The image analysis system exploits the heightened 
contrast between plant matter and the soil background 
in near infra-red images to  locate plants by applying 
an (automatically computed) amplitude threshold. A 
Hough transform technique is then applied to locate 
the underlying row structure. The observations de- 
rived by image analysis are z2(k) = [y2(k) the 

hl(X(k)) = P(k) + @(k)l (6 )  

lateral offset and orientation of the camera relative to  
the plant row. The corresponding observation model 
explains the location of the camera on the vehicle, a 
distance T, ahead of the vehicle reference location: 

where 

where wz(k) represents a noise input. A major compo- 
nent of the noise input arises from the natural variabil- 
ity of the growth habit of the plants, and a Gaussian 
model is not an unreasonable approximation. 

3.3 EKF implementation 
As both the plant model and observation model for 
the image analysis observations are non-linear, a first 
order extended Kalman filter is used. Let %(klk) be the 
state estimate at time k based on sensor observations 
up to and including time k. One step prediction of 
state estimate ?(k + Ilk) is made using (3), or (4) 
if the path curvature is small (in practice, less than 
f10-3m-1 is considered “small”). The computation of 
covariance P(k + Ilk) is simplified by the assumption 
that the dominant source of noise input v(k) in the 
state prediction is from error in the speed measures 
U( k) , hence 

~ ( k  + i l k )  = ~ , p ( k l k ) ~ :  + F,Q(~)F: (9) 

where 
af af 

“ - a x ’  “-a l l  
These partial derivatives may be evaluated when cur- 
vature function e(.) = ax + b where a,  b are constants; 
these are clothoid curves, and are the form in which all 
path segments for the vehicle are specified (including 
the degenerate forms where a = 0, i.e., straight lines 
and circular arcs). Paths constructed from clothoids 
are useful as they can be formed so that the curvature 
of the path is a continuous function of distance; this 
ensures smooth motion of the vehicle and reduces the 
extent of wheel slippage. Whilst clothoid curves are 
inconvenient to use in a Cartesian coordinate system 
(where there is no general analytic form for the curve), 
they are the natural choice in the coordinate system 
we have adopted. Covariance matrix Q ( k )  associated 
with speed vector u ( k )  is provided by the vehicle low 
level control system. 

Magnetometer observations z1 ( I C )  are available at 
the full rate at which predictions are made using the 

F - -  F - -  
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plant model (50 per second). The computationally in- 
tensive nature of the algorithms limits image analysis 
observations z2(k) to 10 per second, and observations 
cannot be derived if insufficient plants are in view, in- 
cluding during turning manceuvres at  the end of rows. 

Correction of the state prediction a ( k  + l lk)  is thus 
performed either using magnetometer data alone, or 
with observations from both sensor systems combined. 
This can be performed using the normal formulation 
for a first order EKF, with observation vector z(k + 1) 
and observation model h() equal to z l ( k  + 1) and hl() 
respectively (magnetometer reading only) or formed 
by stacking observations and observation models when 
image analysis data is also available. 

In either case the predicted measurement takes the 
form 

%(k + Ilk) = h(%(k + Ilk)) 

S ( k  + 1) = H P ( k  + l ( k ) H *  + R 

(10) 

(11) 

with measurement prediction covariance 

where 
dh 
dX 

H = -  

The covariances R used are constant, and are pes- 
simistically chosen on the basis of experimental data. 

The Kalman gain W(k + l), corrected state esti- 
mate x^(k + l ( k  + 1) and covariance P ( k  + Ilk + 1) are 
computed using the standard Kalman filter equations 

W ( k + l )  = P(k+lIk)HTS-’(k + 1) (12) 
? ( k + l l k + l )  = ?(k+llk)  

P ( L + l l k + l )  = P ( k + l l k )  
+ W( k.+ I)(z(~+ l ) -%(k+ 1 Ik ) )  (13) 

- W ( k + l ) S ( k + l ) W * ( k + l )  (14) 

A convenient alternative implementation is possi- 
ble by noting that the correction step of the EKF 
(equations 10 . . .14)  is a recursive least-squares esti- 
mator, and since the observation noise is uncorrelated 
between the two sensor systems it is not necessary to 
stack together the magnetometer and image analysis 
observations. Instead the two sets of observations can 
be processed sequentially using (equations 1 0 .  .14), 
with the same final result. 

4 Headland detection 
As mentioned earlier, the path description is composed 
of a sequence of clothoid segments, some of which are 
“attached” to crop rows, and others which describe 
turning manceuvres to be executed at  the headland 

(the end of the crop row). For the segments compris- 
ing these turns, the length of each clothoid segment is 
contained in the path description. For segments cor- 
responding to crop rows, it would be inconvenient to  
supply the exact row length; instead an approximate 
row length and associated expected error is supplied 
in the path description. The end of the row is auto- 
matically detected by the absence of plants in the row 
positions, at a forward distance which is within the 
supplied tolerance of the row length. The requirement 
of an approximate row length statistic avoids prema- 
ture turns occurring should a small patch of crop be 
missing. 

5 Experimental vehicle 
The EKF has been implemented as the state estima- 
tor for a small horticultural vehicle, shown in the mo- 
tion sequence of figure 3(a-f). The machine spans a 
bed of three rows of crop plants (the width between 
the wheels is 1.86m). It is powered by a small inter- 
nal combustion engine, which drives each of the two 
front wheels via independent continuously variable hy- 
drostatic transmission units, which are electrically ac- 
tuated under computer control. The vehicle is com- 
pletely self contained; electrical supplies are derived 
from an onboard battery/alternator. The maximum 
speed is 1.8 ms-l. 

The control, image analysis and position estimation 
modules run on a network of transputers. One trans- 
puter executes a low level control facility, which pro- 
vides both control of vehicle speed and supplies speed 
vector u ( k ) .  The EKF position estimator itself runs 
on a separate T805 transputer. For development pur- 
poses, the transputer network is hosted by a laptop 
PC, which provides a user interface only. 

6 Experimental results 
Early experimental trials reported in 131 were con- 
ducted on an ideal “simulated” crop (i.e., a dark sur- 
face with white disks painted to  represent the plants). 
More recent trials have been performed in the field; 
figure 2 shows the row following performance in real 
brassica crop (plants around lOOmm height). As men- 
tioned earlier, the vehicle spans a bed of three rows 
of plants; the plants were spaced at 0.5m (typical for 
brassica) and arranged on the square (i.e., forming a 
grid) for this experiment, although this is not a re- 
quirement for the vehicle. The forward speed of the 
vehicle was 0.7ms-l. The lateral offset was measured 
by affixing a nozzle at  the centre of the vehicle; the 
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7 Conclusions 
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Figure 2: Vehicle offset (y): EKF estimated and man- 
ually measured. 

location of a trail of paint dispensed from this noz- 
zle was measured relative to  the mean position of the 
three plants at each plant position along the row. The 
control system was also made to  record the estimated 
offset data from the EKF; manually measured offset 
is shown alongside the EKF estimated offset at  each 
plant position. The measured RMS positional error of 
the vehicle from the row position is 21". The RMS 
error between the internal EKF estimate of offset and 
that measured is just 8mm. 

Trials to  measure the reliability of the system are 
yet to be performed; indeed it is difficult to produce a 
meaningful measure of failure rate since this will de- 
pend upon the state of the crop, the soil and lighting 
conditions etc. However, the vehicle has been operated 
extensively in a variety of crop circumstances; brassica 

ually and with a mechanical transplanter, as well as 
directly drilled sugar beet plants have been used. Sus- 
tained operation on sets of 4 and 8 plant beds of 4Om in 
length (including 3 and 7 headland turns, respectively) 
has been achieved. The sequence in figure 3(a-f) were 
taken from a video recording of the vehicle executing 
a set of 4 passes. A headland turn is shown; note that 
the spacing of the plant beds demands a tight turn, 
causing the inside wheel to  be driven in reverse during 
parts of the turn. 

crops of various stages of growth, planted both man- 

A navigation method has been devised for an au- 
tonomous horticultural robot, which allows the ben- 
efits of a multi-sensor data fusion based system to be 
exploited without need for a Cartesian world coordi- 
nate frame, or a prior map of the environment. In- 
stead only a path description embodying approximate 
row lengths and spacings is required a priori. The crop 
rows themselves provide a sufficient navigational aid, 
obviating the need for artificial beacons. 

The performance illustrated in figure 2 shows that 
the crop rows can be followed with a standard error of 
21mm. However, by comparison of the manually mea- 
sured and EKF estimated lateral offset, it may be seen 
that the position estimation more accurate - 8mm be- 
ing the standard error between the two; this indicates 
that the greatest source of inaccuracy in row following 
arises in the control of the vehicle rather than the state 
estimation. 

Formal trials of reliability remain an area for future 
work, although sustained operation for sets of 4 and 8 
plant beds connected by automatic turns at  the end of 
each row have been achieved without failure. 
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Figure 3: The vehicle executing a turning manceuvre. 
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